变频变压电源厂家,变频器输出电源与市电不一致!

1交直交电压型变频器,此类变频器价格比较贵,另外技术上存在二大问题,一是存在中间整流滤波环节,故效率比较低,二是当电动机处于发电状态能量返回电网困难,通常是接通电阻回路把能量消耗掉,这样一方面增大设备的体积,另一方面能量未得到利用,是极大的浪费,为了使能量能得到利用,可增加有源逆变电路,但这又增加成本和电路的复杂性。

交交变频器其工作原理是将三相工频电源经过几组相控开关控制直接产生所需要变压变频电源,其优点是效率高,能量可以方便返回电网,其最大的缺点输出的最高频率必须小于输入电源频率1/3或1/2,否则输出波形太差,电机产生抖动,不能工作。故交交变频器至今局限低转速调速场合,因而大大限制了它的使用范围。

2交- 交变频技术

交-交变频器采用晶闸管自然换流方式,工作稳定,可靠,适合作为双馈电机转子绕组的变频器电源,交交变频的最高输出频率是电网频率的1/3-1/2,在大功率低频范围有很大的优势。交交变频没有直流环节,变频效率高,主回路简单,不含直流电路及滤波部分,与电源之间无功功率处理以及有功功率回馈容易。虽然交交变频双馈系统得到了普遍的应用,但因其功率因数低,高次谐波多,输出频率低,变化范围窄,使用元件数量多使之应用受到了一定的限制。

矩阵式变频器是一种交交直接变频器,由九个直接接于三相输入和输出之间的开关阵组成。矩阵变换器没有中间直流环节,输出由三个电平组成,谐波含量比较小;其功率电路简单、紧凑,并可输出频率、幅值及相位可控的正弦负载电压;矩阵变换器的输入功率因数可控,可在四象限工作。虽然矩阵变换器有很多优点,但是在其换流过程中不允许存在两个开关同时导通的或者关断的现象,实现起来比较困难。矩阵变换器最大输出电压能力低,器件承受电压高也是此类变换器一个很大缺点。应用在风力发电中,由于矩阵变换器的输入输出不解耦,即无论是负载还是电源侧的不对称都会影响到另一侧。另外,矩阵变换器的输入端必须接滤波电容,虽然其电容的容量比交直交的中间储能电容小,但由于它们是交流电容,要承受开关频率的交流电流,其体积并不小。

交- 交变频技术是早期中压变频的主要形式,因它的工作原理决定了它只能工作在低频率, 仅适应于低转速大容量的场合。因主电路开关器件处于自然关断状态, 不存在强迫换流问题, 所以第一代电力电子器件- 晶闸管(SCR ) 就能很好满足要求, 所以此种中压变频技术比较成熟

3交—直—交变频器

变频器原理是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置。交—直—交变频器则是先把交流电经整流器先整流成直流电,直流中间电路对整流电路的输出进行平滑滤波,再经过逆变器把这个直流电流变成频率和电压都可变的交流电。

交直交变频器又可以分为电压型和电流型两种,由于控制方法和硬件设计等各种因素,电压型逆变器应用比较广泛。传统的电流型交直交变频器采用自然换流的晶闸管作为功率开关,其直流侧电感比较昂贵,而且应用于双馈调速中,在过同步速时需要换流电路,在低转差频率的条件下性能也比较差,在双馈异步风力发电中应用的不多。采用电压型交直交变频器这种整流变频装置具有结构简单、谐波含量少、定转子功率因数可调等优异特点,可以明显地改善双馈发电机的运行状态和输出电能质量,并且该结构通过直流母线侧电容完全实现了网侧和转子侧的分离。电压型交直交变频器的双馈发电机定子磁场定向矢量控制系统,实现了基于风机最大功率点跟踪的发电机有功和无功的解耦控制,是目前变速恒频风力发电的一个代表方向。

此外,还有一种并联的交直交逆变器拓扑结构。这种结构的主要思想是通过一个交直交电流型和一个交直交电压型变频器并联,电流型逆变器作为主逆变器负责功率传输,电压型逆变器作为辅逆变器负责补偿电流型逆变器谐波。这种结构主逆变器有较低的开关频率,辅逆变器有较低的开关电流。同上面提到的交直交电压型逆变器相比较,该拓扑结构具有低开关损耗,整个系统的效率比较高。其缺点也是显而易见的,大量电力电子器件的使用导致成本的上升以及更加复杂的控制算法,另外该种结构电压利用率比较低。

高压变频器可分为交-直-交变频器和交-交变频器,目前国内大都使用交-直-交变频器。其特点: 效率高,调速过程中没有附加损耗; 应用范围广,可用于笼型异步电动机; 调速范围大,特性硬,精度高; 技术复杂,造价高,维护检修困难。 本方法适用于要求精度高、调速性能较好场合。

交—直—交变频器的特点

进入80年代以来,打破晶闸管元件一统天下的自关断电力半导体器件,大功率晶体管GTR,可关断晶闸管GTO以及场控器件绝缘栅双极晶体管IGBT相继问世,开始了一个以自关断电力半导体器件为核心的新时代,与传统的半可控晶闸管器件相比,采用自关断电力半导体器件的电气传动装置具有节约原材料,变换器装置结构简单,体积小,重量轻,功率因数高,谐波污染小等显著优点。

交—直—交变频器存在的问题;

尽管交—直—交变频器具有输出频率高、功率因数高等优点,但交—直—交变频器仍存在许多待改进的问题:

(1)当前大功率高电压电力电子器件处在发展期,GTO元件面临淘汰,IGBT,IGCT尚待成熟;

(2)采用IGCT(或者GTO)、IECT的变流器,器件故障造成直通短路的保护还是难题;电源侧变流器如果发生直通短路会造成电网短路,所以变流器必须采用高漏抗输入变压器,一般要求15%,甚至高达20%;

(3)交—直—交变频器低频运行时过载能力减低,一般运行在5Hz以下时变频器过载能力减半;

(4)交—直—交变频器输出PWM调制电压波形的电压变化率du/dt很高,容易造成电机和电器的绝缘疲劳损伤;输出导线较长时,共模反射电压会在电机侧产生很高的电压,如果是两电平的变流器,这个电压的峰值是直流电压的两倍,如果是三电平的变流器,这个电压的峰值是中间一半电压的三倍;

(5)交—直—交变频器PWM调制将产生谐波、噪声、轴电流等问题。

4低压变频器

低压变频器主要采用交—直—交方式,先把工频交流电源通过整流器转换成直流电源,然后再把直流电源转换成频率、电压均可控制的交流电源以供给电动机。

变频器的电路一般由整流、中间直流环节、逆变和控制4个部分组成。整流部分为三相桥式不可控整流器,逆变部分为IGBT三相桥式逆变器,且输出为PWM波形,中间直流环节为滤波、直流储能和缓冲无功功率。

5交--交变频器与交--直--交变频器的区别

变频器原理是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置。交—直—交变频器则是先把交流电经整流器先整流成直流电,直流中间电路对整流电路的输出进行平滑滤波,再经过逆变器把这个直流电流变成频率和电压都可变的交流电。

交直交变频器又可以分为电压型和电流型两种,由于控制方法和硬件设计等各种因素,电压型逆变器应用比较广泛。传统的电流型交直交变频器采用自然换流的晶闸管作为功率开关,其直流侧电感比较昂贵,而且应用于双馈调速中,在过同步速时需要换流电路,在低转差频率的条件下性能也比较差,在双馈异步风力发电中应用的不多。采用电压型交直交变频器这种整流变频装置具有结构简单、谐波含量少、定转子功率因数可调等优异特点,可以明显地改善双馈发电机的运行状态和输出电能质量,并且该结构通过直流母线侧电容完全实现了网侧和转子侧的分离。电压型交直交变频器的双馈发电机定子磁场定向矢量控制系统,实现了基于风机最大功率点跟踪的发电机有功和无功的解耦控制,是目前变速恒频风力发电的一个代表方向.

此外,还有一种并联的交直交逆变器拓扑结构。这种结构的主要思想是通过一个交直交电流型和一个交直交电压型变频器并联,电流型逆变器作为主逆变器负责功率传输,电压型逆变器作为辅逆变器负责补偿电流型逆变器谐波。这种结构主逆变器有较低的开关频率,辅逆变器有较低的开关电流。同上面提到的交直交电压型逆变器相比较,该拓扑结构具有低开关损耗,整个系统的效率比较高。其缺点也是显而易见的,大量电力电子器件的使用导致成本的上升以及更加复杂的控制算法,另外该种结构电压利用率比较低。

高压变频器可分为交-直-交变频器和交-交变频器,目前国内大都使用交-直-交变频器。其特点: 效率高,调速过程中没有附加损耗; 应用范围广,可用于笼型异步电动机; 调速范围大,特性硬,精度高; 技术复杂,造价高,维护检修困难。 本方法适用于要求精度高、调速性能较好场合。

交-交变频器采用晶闸管自然换流方式,工作稳定,可靠,适合作为双馈电机转子绕组的变频器电源,交交变频的最高输出频率是电网频率的1/3-1/2,在大功率低频范围有很大的优势。交交变频没有直流环节,变频效率高,主回路简单,不含直流电路及滤波部分,与电源之间无功功率处理以及有功功率回馈容易。虽然交交变频双馈系统得到了普遍的应用,但因其功率因数低,高次谐波多,输出频率低,变化范围窄,使用元件数量多使之应用受到了一定的限制。

矩阵式变频器是一种交交直接变频器,由九个直接接于三相输入和输出之间的开关阵组成。矩阵变换器没有中间直流环节,输出由三个电平组成,谐波含量比较小;其功率电路简单、紧凑,并可输出频率、幅值及相位可控的正弦负载电压;矩阵变换器的输入功率因数可控,可在四象限工作。虽然矩阵变换器有很多优点,但是在其换流过程中不允许存在两个开关同时导通的或者关断的现象,实现起来比较困难。矩阵变换器最大输出电压能力低,器件承受电压高也是此类变换器一个很大缺点。应用在风力发电中,由于矩阵变换器的输入输出不解耦,即无论是负载还是电源侧的不对称都会影响到另一侧。另外,矩阵变换器的输入端必须接滤波电容,虽然其电容的容量比交直交的中间储能电容小,但由于它们是交流电容,要承受开关频率的交流电流,其体积并不小。

交- 交变频技术是早期中压变频的主要形式,因它的工作原理决定了它只能工作在低频率, 仅适应于低转速大容量的场合。因主电路开关器件处于自然关断状态, 不存在强迫换流问题, 所以第一代电力电子器件- 晶闸管(SCR ) 就能很好满足要求, 所以此种中压变频技术比较成熟。

来源:莫然博客,欢迎分享本文!

匿名

发表评论

匿名网友